

Eco-Innovation et conception raisonnée

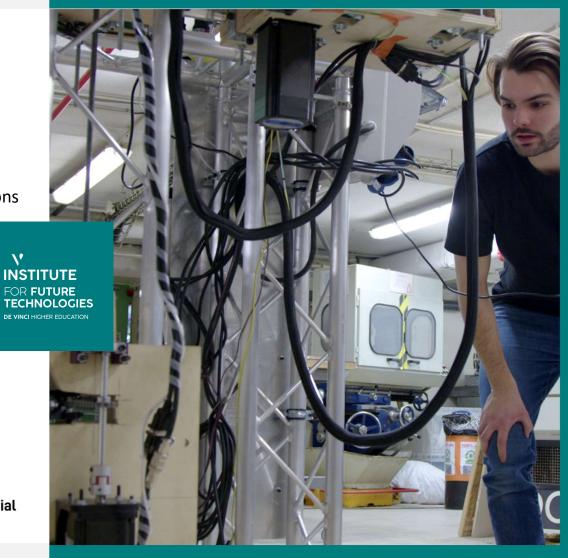
****Major made in IFT

Learning by doing

Develop skills by working on real hardware
Develop innovative, sustainable, and frugal solutions
for diverse contexts.

Develop Real Products

Creation of real products, from prototype to startup


Design for efficient, local and low-impact production

Collaborate R&D Projects

Principal Investigator
Dr. Marc Teyssier
Designer + Engineer = Maker

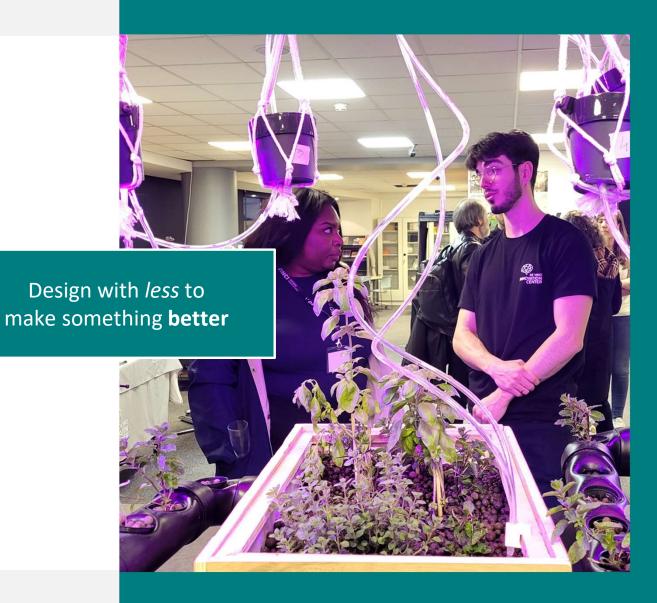
The Resilient Futures group aims to create sustainable technologies in the context of global climate change.

The main motivation is to think about and build technological alternatives to anticipate the challenges of tomorrow, by bringing technological innovations with social impact.

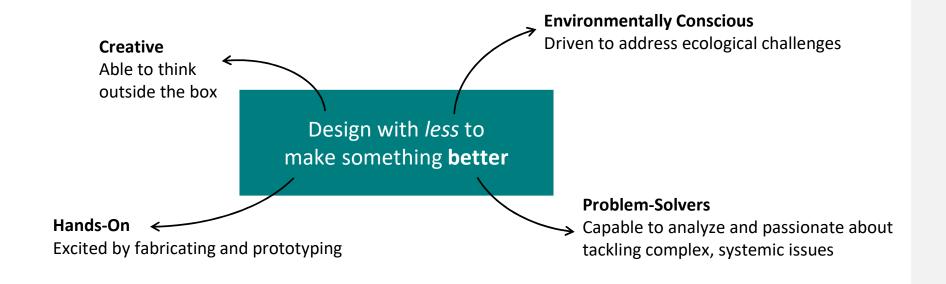
Research Topics

Ol. Sustainable Ecosystems

02. Bio-Materials



03. Tools & Production



**** Eco-innovation?

Eco-innovation integrates environmental considerations into the creation of products and services, optimizing their entire lifecycle—from design to disposal.

**** Eco-innovation?

\Domains

Electronics Low-energy devices, recyclable components

Construction Sustainable materials, energy-neutral buildings

Renewable solutions, frugal IoT systems **Energy**

Agriculture Precision farming, aquaponics systems

Lightweight materials, energy-efficient designs, Eco-packaging, Design biodegradable products

Courses

High Tech

low-Tech

Understand complex systems and infrastructures, use Advanced, cutting-edge technologies for optimization

Why It Matters

Drives innovation and scalability. Essential for advanced systems like IoT and AI.

Examples

Low-cost sensors, renewable energy grids, AI for agriculture,

Simple, accessible technologies designed for practicality and sustainability in resource-constrained settings.

Why It Matters

Provides accessible, frugal solutions in resource-limited settings.

Examples

Clay-based bricks, upcycled materials, Passive Ceramic water filter, Permaculture

**** Courses Goal

Learning by doing

Develop skills by working on real hardware Develop innovative, sustainable, and frugal solutions for diverse contexts.

Develop Real Products

Creation of real products, from prototype to startup Design for efficient, local and low-impact production

Collaborate on large-scale sustainable projects

Collaborate on Research & Development projects Develop a portfolio

\ Courses

Design, Innovation and Research

Making and Fabrication

Planetary Limits and Society

\ Courses

Design, Innovation and Research

Human-Centered Design
Creative Design Methodologies
Innovation Management
Marketing Strategies
Frugal Digital Principles
Project Methodology
Research Methodology
Fabrication Process Optimization

Making and Fabrication

Open-Data Science and Analytics Fundamentals of Efficient Code Fundamentals of Fabrication Rapid Prototyping and In-Situ Innovation Materials and Biomaterials Technological Devices with Low Impact Low Tech

Planetary Limits and Society

Ecology and Resources
Sustainable impacts assessment
Climate Change and Impact
Mitigation
Social Entrepreneurship
Ethics of Engineering

Eco-Innovation Research Project

A4S1 A4 S2 A5 S1 Fundamentals of Efficient Code Fundamentals of Efficient Code Materials and Biomaterials **Fundamentals of Fabrication Fundamentals of Fabrication** Technological Devices with Low **Impact** Rapid Prototyping and In-Situ Innovation **Open-Data Science and Analytics Fabrication Process Optimization** Low Tech **Human-Centered Design Marketing Strategies** Frugal Digital Principles **Creative Design Methodologies Project Methodology** Climate Change and Impact Research Methodology Mitigation **Innovation Management** Planetary Challenges 1: Ecology and Sustainable impacts assessment Resources Social Entreprenarship **Ethics of Engineering Eco-Innovation Project Eco-Innovation Project**

**** Eco-Innovation Project: From Idea to Impact

Design, iterate, and create a real-world solution that address a real need, combining sustainability, innovation, and hands-on experience.

Not (only) a course project!

- Problem Analysis: Identify and deeply understand a real-world need or challenge.
- Design Process: Develop sustainable solutions through research, iterative prototyping and testing.
- Project Execution: Build tangible projects using eco-innovation principles.

Research Contribution

Write and submit a **research paper** to conferences or journals.

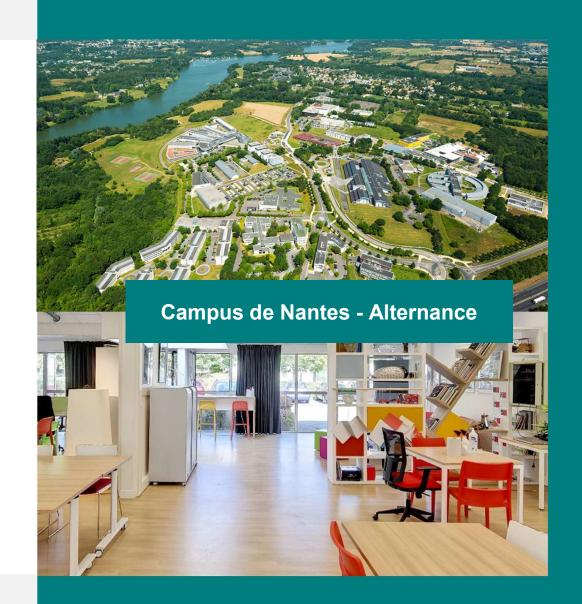
Launch a Product

Develop it as a product and launch through platforms like **Kickstarter**

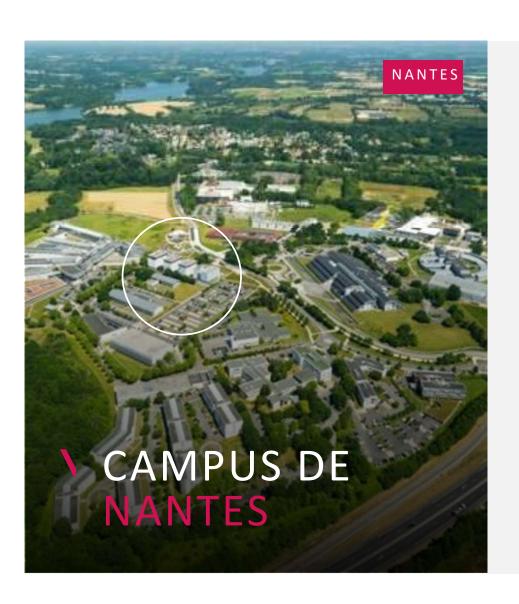
Community Exhibit

Show the project publicly or create a solution to give back to the community.

Evaluation by Impact


\ Work as Eco-Design Engineer

Design Offices: Innovating product solutions, Lead Designer, Creative


Industrial Companies: Integrating ecodesign into production lines, Optimization, Sustainable Officer

Environmental Consulting : Advising on sustainability initiatives, State, ONG

R&D Engineer in frugal innovation, Consultant in sustainable development, Entrepreneur, material researcher, ACV (métier émergent)

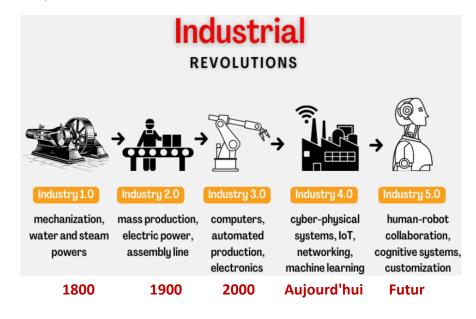
- **Digital Design Factory** à La Chantrerie
- **Complétement aménagé** pour les étudiants

... ET AU CENTRE DE L'EUROPARC DE LA CHANTRERIE

- +400 étudiants ESILV en 2025-2026
- **Prépa intégrée** , A1, A2, A3 + A4
- Hub Creatik, lieux d'innovation
- **4000 étudiants** (Polytech, IMT, Atlantique, Ecole supérieur du bois, CESI...)

INDUSTRIE DURABLE

1. OBJECTIFS DE LA MAJEURE


COMPRENDRE ET ACCOMPAGNER LES TRANSFORMATIONS DE L'INDUSTRIE DU FUTUR 4.0 ET 5.0 AVEC L'AIDE D'INNOVATIONS TECHNOLOGIQUES

Objectifs de la majeure :

- Acquérir des connaissances fondamentales sur l'industrie du futur et de la production/fabrication durabilité.
- Maitriser les principes de base et la gestion de l'industrie 4.0 et 5.0
- Évaluer et intégrer les impacts économiques, sociaux et environnementaux de ces transformations

Thématiques principales :

- Principes de l'industrie 4.0 et nouvelles technologies.
- Gestion et optimisation des processus industriels durables.
- Approches durables : équilibre social, économie circulaire et réduction de l'empreinte environnementale.

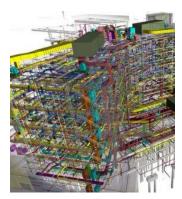
1.2 INDUSTRIE DURABLE - EXCELLENCE OPÉRATIONNELLE

Intelligence Artificielle (exploiter efficacement le Big Data)

Usine connectée et communicante

Maintenance Prédictive

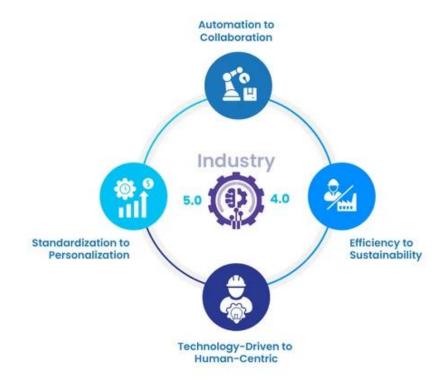
Conduite et exploitation


Robotique et cobotique

Réalité augmentée/virtuelle (ajout d'informations dans le champs visuel)

Fabrication additive (aussi appelée fabrication 3D)

Maquette numérique et/ou jumeau numérique

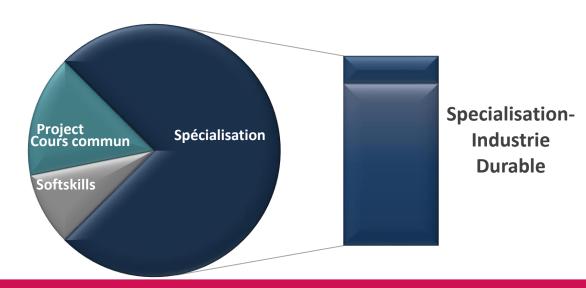

1.3 ID, C'EST QUOI?

Maîtrise des outils d'entreprise : Apprendre à utiliser des outils numériques avancés pour optimiser les processus industriels.

Capacité d'analyse: Former à diagnostiquer, analyser et résoudre des problématiques complexes en intégrant les dimensions économiques, sociales et environnementales.

Gestion et pilotage : Développer des compétences pour la gestion de projets industriels, incluant le management des ressources et la prise de décision stratégique.

Industrie 4.0 et 5.0


2. PROGRAMME- INDUSTRIE DURABLE:

Pour acquérir un maximum de compétences, enseignées dans cette majeure inclure :

- > Soft skills: vous apprenez les soft skills des ingénieurs (7 ECTS)
- Project et cours commun : vous apprenez la méthodologie de projet et cours commun (** ECTS)
- commun avec

Spécialisation Industrie Durable : vous apprenez le cours de l'industrie durable (** ECTS)

Programme

1 2.1 LE PROGRAMME DE LA MAJEURE

Pour acquérir un maximum de compétences, nous développons 3 grands axes sont développés dans cette majeure : :

THEMATIQUE 1 (S7) PRINCIPE D'INDUSTRIE

- Introduction du industrie 4.0 et 5.0
- Bases de l'ingénierie de production
- Modélisation d'entreprise
- Bases de l'économie en génie industriel
- Data science et Analytics
- Artificiel intelligence
- Planétaire challenges: Economy et écologie

THEMATIQUE 2 (S8) GESTION D'INDUSTRIE

- Gestion de l'industrie
- Lean Management
- Gestion de projet
- Gestion de production
- Supply chain Management
- Gestion de innovation
- Recherche en génie industriel
- Stage de 4 à 5 mois

THEMATIQUE 3 (S9) IMPACTS DURABILITE

- Transformation du industrie durable
- Gestion de connaissance
- Economie circulaire
- Analyse de cycle de vie
- Development durable et policy
- Logistique inverse et recyclage
- Impacts de la durabilité

STAGE/ **(S10)**

• 5 à 6 mois

Stage/ Internship

\ 2.1 LE PROGRAMME DE LA MAJEURE

FSIIV A4 IND - SOR CT Mercredi au vendredi

Semestre -7

ESILV A4 IND - S07 CT	4 IND - SO7 CT Mercredi au vendredi			Theme-1 Principe et base de l'industrie	
Unité d'Enseignement	ECTS	Coeff.	Code	Module	
SOFT SKILLS		2		Hackathon A4	
	4	1		Ethique de l'ingénieur	
		1		Internship preparation (in french)	
PROJET		1		Méthodologie Projet	
	6	5		Projet	
Cours Commun		2		Machine learning	
	4	2		New advanced probabilities	
		2		Introduction to industry 4.0 and 5.0	
SPECIALISATION-ID	10	2		Basics of Enterprise modelling	
		2		Basics of Production system engineering	
		2		Economy for Industrial Engineering	
		2		Lean and Continues improvement	
Total	24	24			
ESILV A4 IND - S07 ST	Lundi et mardi				
Unité d'Enseignement	ECTS	Coeff.	Code	Module	
OUVERTURE	6	2	ID,EIIR	Data Analytics in industry	
		2	ID,EIIR	Human-Machine interaction	
		2	ID,EIIR	Planetary Challenges:1 Economy, Ecology and Resources	
Total	6	6			

Semestre-8

Theme-2 Gestion de l'industrie

ESILV A4 IND - 508 CI	iviercreur au	venureur		Theme-2 desuon de l'industrie
Unité d'Enseignement	ECTS	Coeff.	Code	Module
PROJET	6	5		P12-A4 Project
		1		Méthologie Recherche
CORE	4	2		Extreme value theory for risk statistics & game theory
		2		Computational modeling
		2		Entreprise management (ERP)
SPECIALISATION-ID	6	2		Research in Industrial engineering
		2		Production management
Total	16	16		
ESILV A4 IND - S08 ST	Lundi et mar	di		
Unité d'Enseignement	ECTS	Coeff.	Code	Module
		2	ID,EIIR	Planetary Challenges: 2 Economy, Ecology and Resources
OUVERTURE	6	2	ID,EIIR	Agile Management
		2	ID,EIIR	Innovation management
STAGE	6	6		Internship A4
Total	12	12		

Semestre-9

ESILV A5 IND - S09 CT	Mercredi au vendredi			Theme-3 Impacts durable industrie	
Unité d'Enseignement	ECTS	Coeff.	Code	Module	
SOFT SKILLS	3	2		Séminaire A5 Soft Skills et Leadership	
		1		Marketing Yourself et négociation salariale	
PROJET	5	1		Méthodo. Thesis	
	,	4	Projet		
CORF-FSIIV	4	2		Data protection management	
CORE-ESILV	4	2		Product life cycle management	
SPECIALISATION-ID		2		Transformation of sustainable industry	
	12	3		Knowledge management in sustainable entreprise	
		3		Circular Economy	
		2		Life cycle assessment (LCA)	
		2		Reverse logistics & recyclage	
Total	24	0			
ESILV A5 IND - S09 ST	Lundi et mardi				
Unité d'Enseignement	ECTS	Coeff.	Code	Module	
		2	ID,EIIR	Sustainable development Policy	
OUVERTURE	6	2	ID,EIIR	Sustainable impacts assessment	
		2	ID,EIIR	Climate Change and Impact Mitigation	
		6			

2.2 EXEMPLES DE MISSION

Domaine	Mission	Impact attendu
Recyclage industriel	Créer des processus pour collecter et réutiliser les rebuts de production.	Valorisation des déchets
Usines autonomes et vertes	Automatiser la production avec des robots utilisant des algorithmes optimisés pour limiter les déchets.	Augmentation de la productivité
Gestion de l'eau	Développer des systèmes pour recycler l'eau utilisée dans les processus industriels.	Réduction de la consommation d'eau
Chaînes de production circulaire	Concevoir des lignes de production capables de désassembler facilement les produits pour leur recyclage.	Facilitation du recyclage des produits en fin de vie
Technologies à faible impact	Intégrer des procédés de fabrication réduisant l'utilisation de produits chimiques nocifs.	Limitation des risques pour la santé des employés.
Efficacité des ressources	Réduire le gaspillage de matières premières grâce à des outils numériques (ex. jumeaux numériques).	Meilleure utilisation des ressources
Fabrication locale sur demande	Passer à un modèle "on-demand" pour produire uniquement les quantités nécessaires.	Réduction des stocks inutiles
Formation et sensibilisation	Former les employés aux pratiques de fabrication durable et aux objectifs de développement durable (ODD).	Renforcement de la culture de durabilité
Production modulaire	Concevoir des systèmes de fabrication flexibles et reconfigurables pour produire différents produits.	Réduction des investissements en équipements
Zéro déchet	Atteindre un objectif "zéro déchet" dans les usines grâce au recyclage systématique.	Réduction drastique des impacts environnementaux

2.3 QUELQUES MÉTIERS

MERCI

INGÉNIERIE LOGICIELLE & IA (ILIA)

PRÉSENTÉ PAR : MATHIEU SEURIN

MAJEURE « INGENIERIE LOGICIELLE & IA" - NANTES

Ce programme a pour but de former des ingénieurs à la conception logiciel et à l'intelligence artificielle, dans un contexte de hausses des exigences du développement durable et de la diminution des ressources énergétique et matériel. Ce programme s'appuie sur une excellence scientifique et des besoins des entreprises dans le domaine du développement informatique.

**** COMPÉTENCES VISÉES

- Être expert dans la conception de logiciel informatique maintenable et durable.
- Savoir développer des outils de gestion des données et de visualisation pour en exploiter tout le contenu en information
- Être référent sur les enjeux d'intelligence artificielle, à la fois sur le développement, le maintien mais également la sécurité et la régulation de celle-ci.
- Comprendre et appliquer les enjeux de développement durable, dans la conception, développement et maintien des systèmes d'informations
- Diriger et mener à bien des projets basés sur les technologies du numérique.

\ CONTENUS POSSIBLES

- 1 SOFTWARE ENGINEERING
- Scrum Master
- Versioning
- Programmation objet
- Ops
- Déploiement
- Contenerization
- Sécurité
- Web

- 2 TRAITEMENT DE DONNÉES
- Création de bases de données
- Gestion de grande quantité de données
- Transformation et visualisation
- BI
- Data mining

- 3 INTELLIGENCE ARTIFICIELLE
 - Théorie en machine learning
 - Deep Learning
 - Vision par ordinateur
 - Modèle de langue
 - MLOps
 - Robustesse fiabilité
 - Responsable

- 4 NUMÉRIQUE RESPONSABLE
 - Expertise sur les enjeux climatiques et énergétique
 - Évaluation
 environnementale
 des systèmes
 d'informations
 - Analyse de cycle de vie numérique

Métiers : Data Scientist, Data Engineers, Data Officer, Chef de projet Big Data, Développeur Big Data, Consultant Analytics et Visualisation, Ingénieur IA, Software Engineer Éco-responsable, Consultant numérique responsable

PROGRAMME GÉNÉRAL

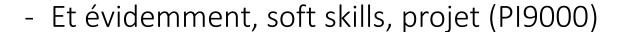
Ingénierie Logicielle

Data et IA

Tronc Commun

Numérique Responsable

NUMÉRIQUE RESPONSABLE


- Planetary Challenges : Economy, Ecology and Resources
- Human Centered Design
 - Workshop on responsible information system design
- Open Data Science and Analytics

TRONC COMMUN

- Machine Learning (S7)
- Advanced Probability (S7)
- Extreme Value Theory et Game Theory (S8)
- Computationnal Modeling (S8)

INGÉNIERIE LOGICIELLE

- Web Developpment (S7)
- Cybersecurity (S7)
- Infrastructure (VM, Active Directory etc..) (S7)
- Mobile Developpment with Kotlin (Java) (S8)
- Containerization (Docker) (S8)
- Clean Code (S8)
- Agile : SCRUM (S8)
- DataOps / MLOps (S9)

kubernetes

IA / TRAITEMENT DE DONNÉES

- Neural Networks and Deep Learning (S7)
- Computer Vision (S7, S9)
- Scrapping and NLP (S8, S9)
- Trustable AI (S8)
- Advanced Database Management (NoSQL, MongoDB) (S8)
- GenAl and Reinforcement Learning (S9)

NEXEMPLE DE PROJETS / STAGE / ALTERNANCE

Cloud Computing

- Orchestration de microservice pour une entreprise d'évènementiels
- Plateforme d'analyse de données en temps réel.

Développement d'applications mobiles et Web

- Application de suivi de santé
- Jeu mobile éducatif.
- Application de recette avec recommandation.

Machine Learning

- Détection de défauts dans des pièces industrielles par vision
- Fine-tuning de LLM pour une entreprise de santé, pour le rendre robuste et éviter les hallucinations
- Analyse d'images satellites avec des données de l'agence spatiale européenne.

Bases de données

- Système de recommandations pour une bibliothèque numérique.
- Analyseur de logs réseau

Éco-conception numérique

- Audit empreinte écologique d'applications.
- Ajout de Soft Disabling pour une application
- Gestion d'énergie pour data centers.

N PROFILS MÉTIERS

Data Scientist

Data Engineers

Data Officer

Chef de projet Big Data

Développeur Big Data

Consultant Analytics et Visualisation

Ingénieur IA

Software Engineer Éco-responsable

Consultant numérique responsable

NOUBLE DIPLÔME (ET INTERNATIONNAL)

Reconduction des doubles diplômes proposés à Paris

- Université de Laval (Canada)
- Politecnico di Torino (Italie)
- University of California (US)
- Georgia Tech (US)
- Cranfield University (Royaume Uni)
- En France : CentraleSupélec, Polytechnique, Paris Saclay

Timeline:

- Novembre : Présentation Double Diplôme Internationaux
- Janvier : Soumission des voeux

MERCI DE VOTRE ATTENTION!